8t^2+4t+7/8=2

Simple and best practice solution for 8t^2+4t+7/8=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8t^2+4t+7/8=2 equation:



8t^2+4t+7/8=2
We move all terms to the left:
8t^2+4t+7/8-(2)=0
determiningTheFunctionDomain 8t^2+4t-2+7/8=0
We multiply all the terms by the denominator
8t^2*8+4t*8+7-2*8=0
We add all the numbers together, and all the variables
8t^2*8+4t*8-9=0
Wy multiply elements
64t^2+32t-9=0
a = 64; b = 32; c = -9;
Δ = b2-4ac
Δ = 322-4·64·(-9)
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-16\sqrt{13}}{2*64}=\frac{-32-16\sqrt{13}}{128} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+16\sqrt{13}}{2*64}=\frac{-32+16\sqrt{13}}{128} $

See similar equations:

| 14x-7=12x | | (2x-1)2=(2x+1) | | (8+2)2=3(x+2) | | -27.5-m=21 | | 7b+4=8b-4 | | 2x+6=400 | | 3x+17=3x+1 | | 10(2x-6)=2x+4(2x-2)-14 | | -2x+2=-6x-26 | | 6t^2-5t-9=0 | | 3n=5n-10 | | 2(−4x+3)+3x+3=  −16 | | 2x2+6-5=0 | | -(2/3)x-10=-2((1/3)x+5) | | −5(−x+1)+4x+1=  23 | | ​27k−38=−198 | | 4(−4x+1)−2x−4=  −162 | | 25-5x-5=1 | | -2+4x=-4+4x | | -2+4x=-4+14 | | 14-6x=-38-7x | | y=42-3 | | 6=11x+9 | | 2.2(b+8)-6.7=7b-8.2 | | -9(-1-n)=-2n-2 | | 5y-13=39 | | -6y=9(y+5)-8 | | C(x)=x33−6x2−28x | | x^2+3x−108=0 | | Y+x=134 | | (3x-2)^2=10 | | 6x=-175 |

Equations solver categories